3.1104 \(\int \frac{1}{(d x)^{3/2} (a+b x^2+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=148 \[ -\frac{2 \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1} F_1\left (-\frac{1}{4};\frac{3}{2},\frac{3}{2};\frac{3}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{a d \sqrt{d x} \sqrt{a+b x^2+c x^4}} \]

[Out]

(-2*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[-1/4, 3/2
, 3/2, 3/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(a*d*Sqrt[d*x]*Sqrt[a + b
*x^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.127419, antiderivative size = 148, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {1141, 510} \[ -\frac{2 \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1} F_1\left (-\frac{1}{4};\frac{3}{2},\frac{3}{2};\frac{3}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{a d \sqrt{d x} \sqrt{a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/((d*x)^(3/2)*(a + b*x^2 + c*x^4)^(3/2)),x]

[Out]

(-2*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[-1/4, 3/2
, 3/2, 3/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(a*d*Sqrt[d*x]*Sqrt[a + b
*x^2 + c*x^4])

Rule 1141

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^2 +
 c*x^4)^FracPart[p])/((1 + (2*c*x^2)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^2)/(b - Rt[b^2 - 4*a*c,
 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c
]))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{1}{(d x)^{3/2} \left (a+b x^2+c x^4\right )^{3/2}} \, dx &=\frac{\left (\sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}\right ) \int \frac{1}{(d x)^{3/2} \left (1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}\right )^{3/2} \left (1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )^{3/2}} \, dx}{a \sqrt{a+b x^2+c x^4}}\\ &=-\frac{2 \sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}} F_1\left (-\frac{1}{4};\frac{3}{2},\frac{3}{2};\frac{3}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{a d \sqrt{d x} \sqrt{a+b x^2+c x^4}}\\ \end{align*}

Mathematica [B]  time = 0.728795, size = 409, normalized size = 2.76 \[ -\frac{x \left (-7 \left (8 a^2 c+a \left (-2 b^2+11 b c x^2+10 c^2 x^4\right )-3 b^2 x^2 \left (b+c x^2\right )\right )+3 c x^4 \left (10 a c-3 b^2\right ) \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{7}{4};\frac{1}{2},\frac{1}{2};\frac{11}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )-7 b x^2 \left (b^2-3 a c\right ) \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{3}{4};\frac{1}{2},\frac{1}{2};\frac{7}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )\right )}{7 a^2 (d x)^{3/2} \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((d*x)^(3/2)*(a + b*x^2 + c*x^4)^(3/2)),x]

[Out]

-(x*(-7*(8*a^2*c - 3*b^2*x^2*(b + c*x^2) + a*(-2*b^2 + 11*b*c*x^2 + 10*c^2*x^4)) - 7*b*(b^2 - 3*a*c)*x^2*Sqrt[
(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^
2 - 4*a*c])]*AppellF1[3/4, 1/2, 1/2, 7/4, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c
])] + 3*c*(-3*b^2 + 10*a*c)*x^4*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt
[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[7/4, 1/2, 1/2, 11/4, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a
*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])]))/(7*a^2*(b^2 - 4*a*c)*(d*x)^(3/2)*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [F]  time = 0.343, size = 0, normalized size = 0. \begin{align*} \int{ \left ( dx \right ) ^{-{\frac{3}{2}}} \left ( c{x}^{4}+b{x}^{2}+a \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x)

[Out]

int(1/(d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}} \left (d x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^4 + b*x^2 + a)^(3/2)*(d*x)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2} + a} \sqrt{d x}}{c^{2} d^{2} x^{10} + 2 \, b c d^{2} x^{8} +{\left (b^{2} + 2 \, a c\right )} d^{2} x^{6} + 2 \, a b d^{2} x^{4} + a^{2} d^{2} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2 + a)*sqrt(d*x)/(c^2*d^2*x^10 + 2*b*c*d^2*x^8 + (b^2 + 2*a*c)*d^2*x^6 + 2*a*b*d^2*x
^4 + a^2*d^2*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (d x\right )^{\frac{3}{2}} \left (a + b x^{2} + c x^{4}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)**(3/2)/(c*x**4+b*x**2+a)**(3/2),x)

[Out]

Integral(1/((d*x)**(3/2)*(a + b*x**2 + c*x**4)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}} \left (d x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((c*x^4 + b*x^2 + a)^(3/2)*(d*x)^(3/2)), x)